| dc.contributor.author | Singha, Achintya | |
| dc.contributor.author | Gibertini, M. | |
| dc.contributor.author | Karmakar, B. | |
| dc.contributor.author | Yuan, S. | |
| dc.contributor.author | Polini, M. | |
| dc.contributor.author | Vignale, Giovanni | |
| dc.contributor.author | Katsnelson, M. I. | |
| dc.contributor.author | Pinczuk, A. | |
| dc.contributor.author | Pfeiffer, L. N. | |
| dc.contributor.author | West, K. W. | |
| dc.contributor.author | Pellegrini, V. | |
| dc.date.accessioned | 2012-11-12T09:03:51Z | |
| dc.date.available | 2012-11-12T09:03:51Z | |
| dc.date.issued | 2011-06-03 | |
| dc.identifier | FOR ACCESS / DOWNLOAD PROBLEM -- PLEASE CONTACT LIBRARIAN, BOSE INSTITUTE, akc@bic.boseinst.ernet.in | en_US |
| dc.identifier.citation | Singha A, Gibertini M, Karmakar B, Yuan S, Polini M, Vignale G, Katsnelson M.l, Pinczuk A Pfeiffer L. N, West K.W, and Pellegrini V (2011) Two-dimensional Matt-Hubbard electrons in an artificial honeycomb lattice, Science 332, 1176. | en_US |
| dc.identifier.issn | 0036-8075 | |
| dc.identifier.uri | 1. Full Text Link -> | |
| dc.identifier.uri | http://www.sciencemag.org/content/332/6034/1176 | en_US |
| dc.identifier.uri | ================================================= | en_US |
| dc.identifier.uri | 2. Scopus : Citation Link -> | en_US |
| dc.identifier.uri | http://www.scopus.com/record/display.url?eid=2-s2.0-79957932832&origin=resultslist&sort=plf-f&src=s&st1=Delocalized-localized+transition+in+a+semiconductor+two-dimensional+honeycomb+lattice&st2=Singha+A%2c&sid=Gup-eMFE8KBBtOHbMIKegRl%3a370&sot=b&sdt=b&sl=119&s=%28ALL%28Delocalized-localized+transition+in+a+semiconductor+two-dimensional+honeycomb+lattice%29+AND+AUTHOR-NAME%28Singha+A%2c%29%29&relpos=0&relpos=0&searchTerm=%28ALL%28Delocalized-localized%20transition%20in%20a%20semiconductor%20two-dimensional%20honeycomb%20lattice%29%20AND%20AUTHOR-NAME%28Singha%20A,%29%29 | en_US |
| dc.description | DOI: 10.1126/science.1204333 | en_US |
| dc.description.abstract | Artificial crystal lattices can be used to tune repulsive Coulomb interactions between electrons. We trapped electrons, confined as a two-dimensional gas in a gallium arsenide quantum well, in a nanofabricated lattice with honeycomb geometry. We probed the excitation spectrum in a magnetic field, identifying collective modes that emerged from the Coulomb interaction in the artificial lattice, as predicted by the Mott-Hubbard model. These observations allow us to determine the Hubbard gap and suggest the existence of a Coulomb-driven ground state. | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | AMER ASSOC ADVANCEMENT SCIENCE | en_US |
| dc.subject | MEAN-FIELD THEORY | en_US |
| dc.subject | DIRAC FERMIONS | en_US |
| dc.subject | GAS | en_US |
| dc.subject | GRAPHENE | en_US |
| dc.title | Two-Dimensional Mott-Hubbard Electrons in an Artificial Honeycomb Lattice | en_US |
| dc.title.alternative | SCIENCE | en_US |
| dc.type | Article | en_US |