• Login
    View Item 
    •   Repository Home
    • Department of Biochemistry
    • Prof. Bablu Bhattacharya
    • View Item
    •   Repository Home
    • Department of Biochemistry
    • Prof. Bablu Bhattacharya
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Binding of Indanocine to the Colchicine Site on Tubulin Promotes Fluorescence, and Its Binding Parameters Resemble Those of the Colchicine Analogue AC

    Thumbnail
    View/Open
    This will be Available Shortly.pdf (34.75Kb)
    Date
    2009-02-24
    Author
    Das, Lalita
    Gupta, Suvroma
    Dasgupta, Dipak
    Poddar, Asim
    Janik, Mark E.
    Bhattacharyya, Bhabatarak
    Metadata
    Show full item record
    Abstract
    Indanocine, a synthetic indanone, has shown potential antiproliferative activity against several tumor types. It is different from many other microtubule-disrupting drugs, because it displays toxicity toward multidrug resistance cells. We have examined the interaction of indanocine with tubulin and determined their binding and thermodynamic parameters using isothermal titration calorimetry (ITC). Indanocine is weakly fluorescent in aqueous solution, and the binding to tubulin enhances fluorescence with a large blue shift in the emission maxima. Indanocine binds to the colchicine site of tubulin, although it bears no structural similarity with colchicine. Nevertheless, like colchicine analogue AC, indanocine is a flexible molecule in which two halves of the molecule are connected through a single bond. Also, like AC, indanocine binds to the colchicine binding site of tubulin in a reversible manner and the association reaction occurs at a faster rate compared to that of colchicine-tubulin binding. The binding kinetics was studied using stopped-flow fluorescence. The association process follows biphasic kinetics similar to that of the colchicine-tubulin interaction. The activation energy of the reaction was 10.5 +/- 0.81 kcal/mol. Further investigation using ITC revealed that the enthalpy of association of indanocine with tubulin is negative and occurs with a negative heat capacity change (Delta C(p) = -175.1 cal mol(-1) K(-1)). The binding is unique with a simultaneous participation of both hydrophobic and hydrogen bonding forces. Finally, we conclude that even though indanocine possesses no structural similarity with colchicine, it recognizes the colchicine binding site of tubulin and its binding properties resemble those of the colchicine analogue AC.
    URI
    1. Full Text Link ->
    =================================================
    =================================================
    2. Scopus : Citation Link ->
    http://www.scopus.com/record/display.url?eid=2-s2.0-61749088240&origin=resultslist&sort=plf-f&src=s&st1=Bhattacharyya&st2=B.&nlo=1&nlr=20&nls=count-f&sid=FE3D80D103704B00C386262FFD986315.euC1gMODexYlPkQec4u1Q%3a143&sot=anl&sdt=aut&sl=48&s=AU-ID%28%22Bhattacharyya%2c+Bhabatarak+D.%22+7103102085%29&relpos=5&relpos=5&searchTerm=AU-ID%28%5C%26quot%3BBhattacharyya%2C+Bhabatarak+D.%5C%26quot%3B+7103102085%29
    Collections
    • Prof. Bablu Bhattacharya [13]

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV
     

     

    Browse

    All of RepositoryCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    DSpace software copyright © 2002-2016  DuraSpace
    Contact Us | Send Feedback
    Theme by 
    Atmire NV